Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Hum Genet ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38636510

RESUMO

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.

3.
Zhongguo Zhong Yao Za Zhi ; 49(2): 325-333, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403308

RESUMO

Neutrophil extracellular traps(NETs) are fibrous networks formed by neutrophils after a procedure called NETosis, with the function of capturing and killing pathogens. NETs are widely involved in the pathological processes of major diseases such as immune system diseases, respiratory diseases, metabolic diseases, cancers, and reperfusion injury. Therefore, regulating NETs has become one of the important ways to prevent and treat the above diseases. As an excellent traditional culture in China, traditional Chinese medicine has made outstanding contributions to the treatment of diseases. In recent years, studies have discovered that a variety of active components in traditional Chinese medicines, Chinese medicine compound prescriptions, and single traditional Chinese medicines can alleviate the symptoms by regulating NETs in the pathological process of major diseases. This article reviews the research progress in the regulation of NETs by the active components of traditional Chinese medicines, Chinese medicine compound prescriptions, and single traditional Chinese medicines in the last five years, aiming to serve as a reference for related research.


Assuntos
Armadilhas Extracelulares , Armadilhas Extracelulares/metabolismo , Medicina Tradicional Chinesa , Neutrófilos , China
4.
Sci Transl Med ; 15(716): eadh4181, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792958

RESUMO

Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that CDKN2A deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, MYC gain or MYC-target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by MYC gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/terapia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Mutação/genética , Medicina de Precisão , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico
5.
Stroke Vasc Neurol ; 8(6): 453-462, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-37072338

RESUMO

OBJECTIVE: Extra-axial cavernous hemangiomas (ECHs) are sporadic and rare intracranial occupational lesions that usually occur within the cavernous sinus. The aetiology of ECHs remains unknown. METHODS: Whole-exome sequencing was performed on ECH lesions from 12 patients (discovery cohort) and droplet digital polymerase-chain-reaction (ddPCR) was used to confirm the identified mutation in 46 additional cases (validation cohort). Laser capture microdissection (LCM) was carried out to capture and characterise subgroups of tissue cells. Mechanistic and functional investigations were carried out in human umbilical vein endothelial cells and a newly established mouse model. RESULTS: We detected somatic GJA4 mutation (c.121G>T, p.G41C) in 5/12 patients with ECH in the discovery cohort and confirmed the finding in the validation cohort (16/46). LCM followed by ddPCR revealed that the mutation was enriched in lesional endothelium. In vitro experiments in endothelial cells demonstrated that the GJA4 mutation activated SGK-1 signalling that in turn upregulated key genes involved in cell hyperproliferation and the loss of arterial specification. Compared with wild-type littermates, mice overexpressing the GJA4 mutation developed ECH-like pathological morphological characteristics (dilated venous lumen and elevated vascular density) in the retinal superficial vascular plexus at the postnatal 3 weeks, which were reversed by an SGK1 inhibitor, EMD638683. CONCLUSIONS: We identified a somatic GJA4 mutation that presents in over one-third of ECH lesions and proposed that ECHs are vascular malformations due to GJA4-induced activation of the SGK1 signalling pathway in brain endothelial cells.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Hemangioma Cavernoso , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso/metabolismo , Hemangioma Cavernoso/patologia , Mutação , Transdução de Sinais
6.
Genome Med ; 15(1): 16, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915208

RESUMO

BACKGROUND: Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical for its precision application. METHODS: We stratified 69 primary IDH-wt GBM patients into TMZ-resistant (n = 29) and sensitive (n = 40) groups, using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcriptomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of intra-tumoral heterogeneity on TMZ efficacy. RESULTS: In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival outcomes (P = 1.12e-4 for progression-free survival (PFS) and 3.63e-4 for overall survival (OS)). Moreover, we found that elevated gene expression of EGR4, PAPPA, LRRC3, and ANXA3 was associated to intrinsic TMZ resistance. In addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration in PTEN, EGFR, and CDKN2A/B was more frequent in TMZ-sensitive samples (Fisher's exact P = 0.0102), subsequently consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas (TCGA) into two groups with divergent survival outcomes (P = 4.58e-4 for PFS and 3.66e-4 for OS). Furthermore, we showed a highly heterogeneous TMZ-response pattern within each GBM patient using in vitro TMZ screening and genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary IDH-wt GBMs was developed into a webserver for public usage ( http://www.wang-lab-hkust.com:3838/TMZEP ). CONCLUSIONS: We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Farmacogenética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição de Resposta de Crescimento Precoce
7.
Angiogenesis ; 26(2): 295-312, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36719480

RESUMO

Cerebral cavernous malformations (CCMs) refer to a common vascular abnormality that affects up to 0.5% of the population. A somatic gain-of-function mutation in MAP3K3 (p.I441M) was recently reported in sporadic CCMs, frequently accompanied by somatic activating PIK3CA mutations in diseased endothelium. However, the molecular mechanisms of these driver genes remain elusive. In this study, we performed whole-exome sequencing and droplet digital polymerase chain reaction to analyze CCM lesions and the matched blood from sporadic patients. 44 of 94 cases harbored mutations in KRIT1/CCM2 or MAP3K3, of which 75% were accompanied by PIK3CA mutations (P = 0.006). AAV-BR1-mediated brain endothelial-specific MAP3K3I441M overexpression induced CCM-like lesions throughout the brain and spinal cord in adolescent mice. Interestingly, over half of lesions disappeared at adulthood. Single-cell RNA sequencing found significant enrichment of the apoptosis pathway in a subset of brain endothelial cells in MAP3K3I441M mice compared to controls. We then demonstrated that MAP3K3I441M overexpression activated p38 signaling that is associated with the apoptosis of endothelial cells in vitro and in vivo. In contrast, the mice simultaneously overexpressing PIK3CA and MAP3K3 mutations had an increased number of CCM-like lesions and maintained these lesions for a longer time compared to those with only MAP3K3I441M. Further in vitro and in vivo experiments showed that activating PI3K signaling increased proliferation and alleviated apoptosis of endothelial cells. By using AAV-BR1, we found that MAP3K3I441M mutation can provoke CCM-like lesions in mice and the activation of PI3K signaling significantly enhances and maintains these lesions, providing a preclinical model for the further mechanistic and therapeutic study of CCMs.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Hemangioma Cavernoso do Sistema Nervoso Central , MAP Quinase Quinase Quinase 3 , Animais , Camundongos , Células Endoteliais/metabolismo , Endotélio/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
8.
Am J Hum Genet ; 109(11): 1986-1997, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198314

RESUMO

Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Calibragem , Genótipo , Aprendizado de Máquina
9.
Mol Genet Genomic Med ; 10(11): e2047, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36124564

RESUMO

BACKGROUND: Patients with impaired kidney function were found at a high risk of COVID-19 hospitalization and mortality in many observational, cross-sectional, and hospital-based studies, but evidence from large-scale prospective cohorts has been lacking. We aimed to examine the association of kidney function-related biomarkers and their genetic predisposition with the risk of developing severe COVID-19 in population-based data. METHODS: We analyzed data from UK Biobank to examine the prospective association of abnormal kidney function biomarkers with severe COVID-19, defined by laboratory-confirmed COVID-19 hospitalizations. Using genotype data, we constructed polygenic risk scores (PRS) to represent an individual's overall genetic risk for these biomarkers. We also identified tipping points where the risk of severe COVID-19 began to increase significantly for each biomarker. RESULTS: Of the 502,506 adults, 1650 (0.32%) were identified as severe COVID-19, before August 12, 2020. High levels of cystatin C (OR: 1.3; 95% CI: 1.2-1.5; FDR = 1.5 × 10-5 ), serum creatinine (OR: 1.7; 95% CI: 1.3-2.1; p = 3.5 × 10-4 ; FDR = 3.5 × 10-4 ), microalbuminuria (OR: 1.4; 95% CI: 1.2-1.6; FDR = 4 × 10-4 ), and UACR (urinary albumin creatinine ratio; OR: 1.4; 95% CI: 1.2-1.6; p = 3.5 × 10-4 ; FDR = 3.5 × 10-4 ) were found significantly associated with severe COVID-19. Individuals with top 10% of PRS for elevated cystatin C, urate, and microalbuminuria had 28% to 43% higher risks of severe COVID-19 than individuals with bottom 30% PRS (p < 0.05). Tipping-point analyses further supported that severe COVID-19 could occur even when the values of cystatin C, urate (male), and microalbuminuria were within their normal value ranges (OR >1.1, p < 0.05). CONCLUSIONS: Findings from this study might point to new directions for clinicians and policymakers in optimizing risk-stratification among patients based on polygenic risk estimation and tipping points of kidney function markers. Our results call for further investigation to develop a better strategy to prevent severe COVID-19 outcomes among patients with genetic predisposition to impaired kidney function. These findings could provide a new tool for clinicians and policymakers in the future especially if we need to live with COVID-19 for a long time.


Assuntos
COVID-19 , Insuficiência Renal , Adulto , Humanos , Masculino , Cistatina C/urina , COVID-19/genética , Predisposição Genética para Doença , Estudos Transversais , Ácido Úrico , Albuminúria/genética , Biomarcadores , Rim
10.
Exp Aging Res ; 48(4): 387-399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34969355

RESUMO

OBJECTIVES: The objective of this study was to understand how sleep duration could affect depression among elderly in China. METHOD: A total of 7103 individuals aged 60 and older were selected from China Health and Retirement Longitudinal Study. A generalized linear mixed-effects model was used to estimate the relationship between sleep duration and depression, and we performed stratified analyses by age: young-old elderly, old-old elderly and oldest-old elderly. RESULTS: Short sleep duration significantly incresased CES-D10 depression scores. In addition, the participants with middle sleep duration had higher CES-D10 scores compared to the participants with long sleep duration among young-old elderly, and we found that middle sleep duration was not significantly different from CES-D10 scores after adjustment for demographics, frequencies of activities and Chronic diseases. CONCLUSIONS: These findings suggested that there was a complex association between depression and sleep duration among elderly in China. Different from previous research results on the middle or normal sleep time of the elderly, the middle sleep duration maybe not optimal sleep duration in this study. Investigation of sleep extension to prevent depression may be warranted among the elderly.


Assuntos
Envelhecimento , Depressão , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Depressão/epidemiologia , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Sono
11.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34882196

RESUMO

Multiple statistical methods for aggregate association testing have been developed for whole-genome sequencing (WGS) data. Many aggregate variants in a given genomic window and ignore existing knowledge to define test regions, resulting in many identified regions not clearly linked to genes, and thus, limiting biological understanding. Functional information from new technologies (such as Hi-C and its derivatives), which can help link enhancers to their effector genes, can be leveraged to predefine variant sets for aggregate testing in WGS data. Here, we propose the eSCAN (scan the enhancers) method for genome-wide assessment of enhancer regions in sequencing studies, combining the advantages of dynamic window selection in SCANG (SCAN the Genome), a previously developed method, with the advantages of incorporating putative regulatory regions from annotation. eSCAN, by searching in putative enhancers, increases statistical power and aids mechanistic interpretation, as demonstrated by extensive simulation studies. We also apply eSCAN for blood cell traits using NHLBI Trans-Omics for Precision Medicine WGS data. Results from real data analysis show that eSCAN is able to capture more significant signals, and these signals are of shorter length (indicating higher resolution fine-mapping capability) and drive association of larger regions detected by other methods.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Estudo de Associação Genômica Ampla/métodos , Genômica , Sequências Reguladoras de Ácido Nucleico , Sequenciamento Completo do Genoma/métodos
13.
BMC Bioinformatics ; 22(1): 171, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789579

RESUMO

BACKGROUND: Protein post-translational modification (PTM) is a key issue to investigate the mechanism of protein's function. With the rapid development of proteomics technology, a large amount of protein sequence data has been generated, which highlights the importance of the in-depth study and analysis of PTMs in proteins. METHOD: We proposed a new multi-classification machine learning pipeline MultiLyGAN to identity seven types of lysine modified sites. Using eight different sequential and five structural construction methods, 1497 valid features were remained after the filtering by Pearson correlation coefficient. To solve the data imbalance problem, Conditional Generative Adversarial Network (CGAN) and Conditional Wasserstein Generative Adversarial Network (CWGAN), two influential deep generative methods were leveraged and compared to generate new samples for the types with fewer samples. Finally, random forest algorithm was utilized to predict seven categories. RESULTS: In the tenfold cross-validation, accuracy (Acc) and Matthews correlation coefficient (MCC) were 0.8589 and 0.8376, respectively. In the independent test, Acc and MCC were 0.8549 and 0.8330, respectively. The results indicated that CWGAN better solved the existing data imbalance and stabilized the training error. Alternatively, an accumulated feature importance analysis reported that CKSAAP, PWM and structural features were the three most important feature-encoding schemes. MultiLyGAN can be found at https://github.com/Lab-Xu/MultiLyGAN . CONCLUSIONS: The CWGAN greatly improved the predictive performance in all experiments. Features derived from CKSAAP, PWM and structure schemes are the most informative and had the greatest contribution to the prediction of PTM.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Proteínas , Algoritmos , Lisina/metabolismo , Aprendizado de Máquina , Proteínas/genética
14.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33822890

RESUMO

Recent pharmacogenomic studies that generate sequencing data coupled with pharmacological characteristics for patient-derived cancer cell lines led to large amounts of multi-omics data for precision cancer medicine. Among various obstacles hindering clinical translation, lacking effective methods for multimodal and multisource data integration is becoming a bottleneck. Here we proposed DeepDRK, a machine learning framework for deciphering drug response through kernel-based data integration. To transfer information among different drugs and cancer types, we trained deep neural networks on more than 20 000 pan-cancer cell line-anticancer drug pairs. These pairs were characterized by kernel-based similarity matrices integrating multisource and multi-omics data including genomics, transcriptomics, epigenomics, chemical properties of compounds and known drug-target interactions. Applied to benchmark cancer cell line datasets, our model surpassed previous approaches with higher accuracy and better robustness. Then we applied our model on newly established patient-derived cancer cell lines and achieved satisfactory performance with AUC of 0.84 and AUPRC of 0.77. Moreover, DeepDRK was used to predict clinical response of cancer patients. Notably, the prediction of DeepDRK correlated well with clinical outcome of patients and revealed multiple drug repurposing candidates. In sum, DeepDRK provided a computational method to predict drug response of cancer cells from integrating pharmacogenomic datasets, offering an alternative way to prioritize repurposing drugs in precision cancer treatment. The DeepDRK is freely available via https://github.com/wangyc82/DeepDRK.


Assuntos
Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Aprendizado Profundo , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Software , Antineoplásicos/química , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Farmacogenética/métodos , Medicina de Precisão/métodos , Prognóstico , Transcriptoma
15.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33839756

RESUMO

Batch effect correction is an essential step in the integrative analysis of multiple single-cell RNA-sequencing (scRNA-seq) data. One state-of-the-art strategy for batch effect correction is via unsupervised or supervised detection of mutual nearest neighbors (MNNs). However, both types of methods only detect MNNs across batches of uncorrected data, where the large batch effects may affect the MNN search. To address this issue, we presented a batch effect correction approach via iterative supervised MNN (iSMNN) refinement across data after correction. Our benchmarking on both simulation and real datasets showed the advantages of the iterative refinement of MNNs on the performance of correction. Compared to popular alternative methods, our iSMNN is able to better mix the cells of the same cell type across batches. In addition, iSMNN can also facilitate the identification of differentially expressed genes (DEGs) that are relevant to the biological function of certain cell types. These results indicated that iSMNN will be a valuable method for integrating multiple scRNA-seq datasets that can facilitate biological and medical studies at single-cell level.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Benchmarking/métodos , Células Cultivadas , Humanos , Camundongos , Reprodutibilidade dos Testes
16.
Am J Hum Genet ; 108(5): 942-950, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33891857

RESUMO

Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/genética , MAP Quinase Quinase Quinase 3/genética , Mutação , Sequência de Aminoácidos , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais/metabolismo , Mutação em Linhagem Germinativa , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Moleculares
17.
Biomed Pharmacother ; 121: 109633, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31743876

RESUMO

Pericytes, as mural cells of microvessels, are important regulators of vascular structure formation and function maintenance in the process of cerebrovascular maturation, cerebrovascular homeostasis and disease. In the recent years, they have gradually become the hot spot of the research. In fact, pericytes are not isolated cells. Their functions can't be played without the cooperation with surrounding cells. In the neurovascular unit (NVU), they communicate with other cells by direct contact or through signaling pathways to regulate cerebral vascular function and the state of blood vessels in response to changes in neural activity. Pericytes are closely related to the cerebrovascular and central nervous system disease. Currently, a large number of clinical and animal studies have confirmed that pericytes biological function is related to cerebral blood flow, blood-brain barrier permeability, cerebral vascular formation maintenance, and neuroinflammation. The objective of this review is to highlight the role of pericytes in cerebral microvessels as well as their relationships with stroke, dementia, and brain tumor disease. The possible pathogenic mechanisms between pericytes and these diseases will also be described. As a matter of fact, the role of pericytes in the brain-associated vascular disease may provide new ideas for clinical treatment.


Assuntos
Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Microvasos/patologia , Pericitos/patologia , Animais , Barreira Hematoencefálica/patologia , Circulação Cerebrovascular/fisiologia , Humanos , Transdução de Sinais/fisiologia
18.
Pharmacol Res ; 151: 104552, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747557

RESUMO

In recent years, although the concept and means of modern treatment of chronic heart failure(CHF) are continually improving, the readmission rate and mortality rate are still high. At present, there is evidence that there is a link between gut microbiota and heart failure, so the intervention of gut microbiota and its metabolites is expected to become a potential new therapeutic target in heart failure. Traditional Chinese medicine(TCM) has apparent advantages in stabilizing the disease, improving heart function, and improving the quality of life. It can exert its effect by operating in the gut microbiota and is an ideal intestinal micro-ecological regulator. Therefore, this article will mainly discuss the advantages of traditional Chinese medicine in treating CHF, the relationship between traditional Chinese medicine and gut microbiota, the relationship between CHF and gut microbiota, and the ways of regulating gut microbiota by traditional Chinese medicine to prevent and treat CHF. It will specify the target and mechanism of traditional Chinese medicine treating heart failure by acting gut microbiota and provide ideas for the treatment of heart failure.


Assuntos
Cardiotônicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Doença Crônica , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Medicina Tradicional Chinesa
19.
Complement Ther Med ; 47: 102021, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31780013

RESUMO

INTRODUCTION: At present, a large number of people in the world are suffering from type 2 diabetes (T2DM), so it is urgent to develop effective treatment measures of T2DM. In China, many clinical studies have shown that Jinqi Jiangtang Tablet (JQJTT), a traditional Chinese patent medicine (TCPM), has a good effect in the treatment of T2DM. This systematic review and meta-analysis is intended to assess the efficacy and safety of JQJTT plus conventional therapy in the treatment of T2DM. METHODS: Seven electronic databases were searched to include in eligible studies published from inception to May 24, 2018. Randomized controlled trials (RCTs) of JQJTT in combination with the conventional therapy versus conventional therapy alone or combined with placebo were included. The two reviewers independently conducted data extraction and quality assessment. For different variable types, the outcome measures were expressed as risk ratios (RRs) or mean differences (MDs). According to the value of I2, a fixed or random effect model was used for statistical analysis. RESULTS: Seventeen studies conducted in China were identified in this systematic review, which included 1,425 participants. The meta-analysis on the effective rate of the comparison groups showed a significant difference in favor of the JQJTT group (RR 1.34; 95%CI [1.02, 1.75]; p = 0.04). In addition, the results showed a statistically significant reduction in FBG (MD -0.85; 95%CI [-1.03, -0.68]; p < 0.00001), 2hPG (MD -1.95; 95%CI [-2.33, -1.56]; p < 0.00001), HbA1c (MD -0.76; 95%CI [-1.03, -0.49]; p < 0.00001), FINS (MD -3.05; 95%CI [-3.69, -2.42]; p < 0.00001), PINS (MD -10.22; 95%CI [-13.93, -6.50]; p < 0.00001), HOMA-IR (MD -1.11; 95%CI [-1.55, -0.68]; p < 0.00001), LDL-C (MD -0.37; 95%CI [-0.63, -0.11]; p = 0.006), TC (MD -0.46; 95%CI [-0.85, -0.08]; p = 0.02), TG (MD -0.34; 95%CI [-0.47, -0.20]; p < 0.00001) with JQJTT plus conventional therapy versus conventional therapy alone. There was no statistical difference between the two comparison groups in HDL-C, total incidence of adverse events and incidence of hypoglycemia. CONCLUSION: The available evidence indicates that JQJTT combined with conventional therapy for treating T2DM has a good performance in regulating glycolipid metabolism and improving insulin resistance. However, due to the limitations of this systematic review, the results should be interpreted with caution.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Comprimidos
20.
Biomed Pharmacother ; 120: 109451, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31586900

RESUMO

The occurrence of ischemic heart disease(IHD) is a multi-step chain process from potential risk factors to overt clinical diseases. Vascular cells, blood cells, cardiomyocytes and stem cells are all involved in the pathophysiological links via continual and polynary crosstalk. Exosomes,as powerful vectors for intercellular communication,have been a hotspot for basic and clinical research. Plenty of evidence has shown that exosomes largely participate in the evolution of IHD, including endothelial dysfunction, lipid deposition, atheromatous plaque formation and rupture, myocardial ischemia-reperfusion(I/R) injury,and heart failure (HF), while the rules for detailed communication in the different stages of this continuous disease are still poorly understood. This review will systematically describe characteristics of exosomal crosstalk between different cells in the diverse periods, and also cast light on the potential and challenges for exosome application as therapeutic targets, hoping to offer supporting background for the following research.


Assuntos
Doenças Cardiovasculares/metabolismo , Exossomos/metabolismo , Isquemia Miocárdica/metabolismo , Animais , Doenças Cardiovasculares/patologia , Comunicação Celular/fisiologia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...